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FLOWS OF NON-NEWTONIAN FLUIDS WITH HYDRAULIC JUMPS

UDC 532.536Yu. A. Berezin1 and L. A. Spodareva2

Steady and unsteady waves propagating over the surface of a thin layer of a dilatant fluid moving
over an inclined plane, with rheological properties of the fluid described by the Ostwald–de Waele
power law, are studied analytically and numerically.

Viscosity of many fluids of natural and artificial origin (for instance, volcanic lava, mudflows, oil, polymer
solutions and melts, suspensions, paints, honey, and grainy materials) called non-Newtonian fluids depends on the
shear velocity of the flow. An adequate equation of state for these fluids is considered to be the Ostwald–de Waele
power law, which relates the shear stress and the shear velocity [1–9]. This law contains two parameters: dynamic
viscosity η0 [kg ·m−1 · secn−2] and the index n, which takes the values 0 < n < 1 for pseudoplastic fluids and n > 1
for dilatant fluids. In particular, mudflows (0.1 6 n 6 0.4) and oil (n = 0.8) are pseudoplastic fluids, whereas the
lime–water mixture (n = 1.47) and saccharified honey (n = 2.5) are dilatant fluids. The value n = 1 corresponds
to the Newtonian fluid.

Stability of thin layers of incompressible non-Newtonian fluids flowing down inclined (at an angle α) planes
to small periodic perturbations was analyzed in [5–9]. It is shown that such perturbations are unstable for Ostwald
numbers On > O∗n and stable for On < O∗n, where O∗n = (2n + 1)n−1n2−ncotα is the critical Ostwald number
corresponding to a fluid with an index n. Surface tension, which should be taken into account in considering very
thin layers (films) does not change this critical value, but the range of wavenumbers of unstable perturbations
becomes finite. The numerical results in [6–9] refer to the evolution of the profile of the free surface of layers of
some non-Newtonian fluids for initial perturbations of two types, which are a localized triangular swelling of finite
height and width and a smooth step that is not limited upstream. As the perturbations move, the profiles of the
free surface become significantly different. For instance, the initial step that appeared on the surface of a layer of
a pseudoplastic fluid is transformed into a series of jumps with a steep leading front with monotonically varying
thickness of the fluid layer between these jumps. This structure is similar to steady roll waves studied by Ng and
Mei [5], who found that steady solutions of the smoothed jump type do not exist in pseudoplastic fluids. In the
present work, we study steady and unsteady waves of the type of a smoothed hydraulic jump, running on the surface
of a layer of a dilatant fluid on an inclined plane. Some numerical solutions of such a problem can be found in [10].

Similar to [5–9], we write the initial equations in the following form:

ρ(ut + uux + vuy) = −px + ρg sinα+ (σxx)x + (τxy)y,

ρ(vt + uvx + vvy) = −py − ρg cosα+ (τyx)x + (σyy)y, (1)

ux + vy = 0.

The coordinate x is directed along the inclined plane, the coordinate y is normal to it, u and v are the x- and
y-components of velocity, σ and τ are the normal and tangential components of the stress tensor, α is the angle of
the inclined plane, p is the pressure, and ρ is the density of the fluid. For non-Newtonian fluids, we have
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σxx = 2ρνnAnux, σyy = 2ρνnAnvy,

τxy = τyx = ρνnAn(uy + vx), An = [2u2
x + 2v2

y + (uy + vx)2](n−1)/2,

where νn [m2 · secn−2] is the kinematic viscosity of the fluid with the index n.
We supplement system (1) by no-slip boundary conditions on the plane y = 0 and zero stresses, and also

by the kinematic equation on the free surface y = H(x, t). We introduce the following scales: L0 and H0 are the
lengths along and normal to the inclined plane, p0 = ρu2

0 is the pressure, u0 = (g sinα/νn)1/n(n/(2n+ 1))H(n+1)/n
0

is the longitudinal velocity, and t0 = L0/u0 is the time. Assuming that the undisturbed thickness of the layer H0 is
much smaller than the characteristic length along the inclined plane L0 (ε ≡ H0/L0 � 1), we determine the orders
of the terms and integrate Eqs. (1) along the y coordinate from 0 to H(x, t). As a result, we obtain equations
averaged over the thickness of a thin layer of a non-Newtonian fluid on a rough inclined plane:

Ht +Qx = 0; (2)

Qt + c1(Q2/H)x = (c2/On)[(1−Hxcotα)H −Qn/H2n]. (3)

Here H(x, t) is the function that describes the shape of the free surface, Q(x, t) =

H∫
0

u dy is the flow rate of the

fluid, c1 = (4n+ 2)/(3n+ 2), c2 = ((2n+ 1)/n)n, and On = Hn
0 u

2−n
0 /νn is the Ostwald number.

We consider the possibility of existence of swellings on the free surface of the layer, which do not change
their shape in a coordinate system moving with a constant velocity V . We assume that the functions H and Q

depend on ξ = x−V t only and substitute the partial derivatives with respect to the x coordinate and time t by the
derivative with respect to ξ: ∂/∂t = −V d/dξ, ∂/∂x = d/dξ. Integrating Eq. (2), we obtain the relation between
the flow rate and the surface swelling Q = V H + C; substituting the latter into Eq. (3), we obtain a first-order
ordinary differential equation that describes the shape of the free surface:[

On

(
(c1 − 1)V 2 − c1C

2

H2

)
+ c2Hcotα

]dH
dξ

= c2

(
H − (V H + C)n

H2n

)
. (4)

Here C is the constant of integration.
We seek the solution of Eq. (4) in the form of a smoothed hydraulic jump: lim

ξ→−∞
H(ξ) = H1 = const and

lim
ξ→∞

H(ξ) = 1. The latter equality means that the free-stream parameters H0 = Q0 = 1 as ξ →∞ are used as the

scales of the layer thickness and fluid flow rate. In this case, we have C = 1 − V , and the equation for the wave
profile becomes

dH(ξ)
dξ

=
f(H)
g(H)

, (5)

where f(H) = c2[H − (V (H − 1) + 1)n/H2n] and g(H) = On[(c1 − 1)V 2 − c1(1− V )2/H2] + c2Hcotα.
For the above choice, the shape of the possible solution is lim

H→H1
(dH/dξ) = 0; therefore, we have

lim
H→H1

f(H) = 0. Hence, we can determine the wave velocity

V = (H(2n+1)/n
1 − 1)/(H1 − 1). (6)

It follows from formula (6) that, for high amplitudes H1, the velocity is V = H
(n+1)/n
1 ; for strongly dilatant fluids

(n� 1), the wave velocity is directly proportional to the amplitude H1.
In a smoothed hydraulic jump, the profile is characterized by a negative derivative dH/dξ < 0 everywhere

except for the points H = 1 and H = H1 where it vanishes. The sign of dH/dξ is determined by the signs of the
functions f(H) and g(H). The calculations show that the function f(H) is always negative for 1 < H < H1, and
the sign of the function g(H) depends on the jump amplitude. If H1 is lower than a certain critical value H∗1 (n),
then the function g(H) is positive, and the derivative dH/dξ is negative everywhere within the range of variation of
the layer thickness from the amplitude value H1 to the undisturbed value H = 1. This means that the swelling of
the free surface monotonically decreases from H1 to H = 1; hence, a continuous solution of the smoothed jump type
exists. For H1 > H∗1 (n), the function g(H) may become negative and the derivative dH/dξ may become positive. In
this case, there is no continuous profile: the swelling of the free surface monotonically decreases from the amplitude
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Fig. 1 Fig. 2

Fig. 1. Critical amplitude of a steady wave versus the Ostwald number.

Fig. 2. Layer thickness behind the jump versus the steady-wave amplitude for On = 1 (1), 0.5 (2), and 0.25 (3).

H1 to the value H = H∗ > 1, at which the derivative dH/dξ turns to infinity. The undisturbed level H = 1 can be
reached only if there is a discontinuity in this place. However, such discontinuous solutions have a formal character,
since at the points where H → H∗, the main assumption of the model is violated, which reads that the thickness
of the fluid layer is much smaller than the characteristic longitudinal scale of the problem. To determine the value
of H∗1 (n), we solve the equation g(H) = 0 for several increasing values of the amplitude H1. If H1 is a little higher
than H = 1, then the real root of this equation is smaller than unity and, hence, is located outside the range
of variation of the layer thickness for the solutions of the type considered. As H1 increases, the real root of the
equation g(H) = 0 tends monotonically to unity from the side of lower values. The point of transition of this root
through unity corresponds to the critical amplitude H∗1 . For discontinuous solutions corresponding to the values
H1 > H∗1 , the layer thickness behind the jump is determined as the real root of the equation g(H) = 0.

All calculations were performed for a water solution of lime with an index n = 1.47. Figure 1 shows the
critical amplitude of the jump H∗1 as a function of the Ostwald number On. It is seen that H∗1 decreases with
increasing On. Figure 2 shows the layer thickness H∗ behind the jump versus the amplitude H1 for different values
of On. The value of H∗ increases monotonically for all values of On with increasing wave amplitude. For a fixed
value of H1, the layer thickness behind the jump increases with increasing On.

The continuous profiles of the free surface of the dilatant fluid layer in the region 1 6 H1 < H∗1 (n) can be
found by solving numerically Eq. (5) with given parameters H1, n, and On. Since the derivative dH/dξ vanishes
at the point H = H1, one has to move apart from this point and start calculations from the value of the sought
function H = H1 − h, where h � H1 is a solution of Eq. (5) linearized near the singular point H = H1. Such
numerical solutions are smoothed jumps whose front width decreases with increasing amplitude. A similar analysis
for pseudoplastic fluids (n < 1) shows that solutions of the smoothed hydraulic type do not exist. In this case, the
solutions, which are stationary in a coordinate system moving with a certain constant velocity, have the form of
periodic jags with steep leading fronts [5].

We consider unsteady waves propagating over the surface of a dilatant fluid with a swelling of the free surface
H2(0, t) > 1 and the corresponding flow rate and velocity of the fluid set at the left boundary of the computational
domain. As in [5, 6], Eqs. (2) and (3) were solved numerically using an explicit finite-difference scheme. According
to the calculations, there are two typical regimes, depending on whether the value of H2(0, t) at the boundary of
the computational domain, which is used as the jump amplitude H1, corresponds to continuous or discontinuous
steady (in the moving coordinate system) solutions. For H2 < H∗1 , a smoothed jump with an amplitude H2 rapidly
emerges; it propagates with a constant velocity over the surface of the undisturbed layer and does not change its
shape. The value of velocity calculated by the displacement of the steepest point of the profile coincides with that
obtained by Eq. (6) assuming that H1 = H2(0, t). In particular, such a flow pattern is observed in calculations with
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Fig. 3 Fig. 4

Fig. 3. Profile of the free surface of the fluid layer (On = 20 and H2 = 2) for t = 0 (1), 1.25 (2),
2.5 (3), 3.75 (4), and 5 (5).

Fig. 4. Profile of the free surface of the fluid layer (On = 20 and H2 = 3) for t = 0 (1), 0.625 (2),
and 1.25 (3).

Fig. 5. Profiles of the free surface of the fluid layer (t =
23.7 msec): curve 1 shows the initial profile; curves 2 and 3
refer to On = 10 and 20, respectively.

the parameters On = 1 and H2(0, t) = 1.2, since the critical amplitude is H∗1 = 1.28 in this case.
If we increase On and choose H2(0, t) such that the corresponding formal steady (in the moving coordinate

system) solution is discontinuous, the evolution of the flow is different: a rapidly moving precursor with a steep
leading front is formed on the profile of the free surface (Fig. 3). Its velocity U decreases with time (U = 20.4,
18.2, 16.7, and 14.5 at the times t = 1.25, 2.5, 3.75, and 5.0, respectively). The velocity of the part of the profile
behind the precursor is approximately constant and equal to U1 = 2.18. At greater times, the precursor amplitude
decreases asymptotically, and the profile becomes “diffusive”. An increase in the amplitude of the free surface profile
H2(0, t) with an unchanged value of On leads to an increase in the precursor velocity (Fig. 4). It follows from a
comparison of curve 2 in Fig. 3 and curve 3 in Fig. 4, which show the profile shape at the same dimensionless time
(t = 1.25).

The time scale used in passing to dimensionless variables is
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t0 = (H0/(g sinα))1/2((2n+ 1)/n)n/2O−1/2
n .

If we choose a particular fluid with a certain value of the index n and fix the undisturbed thickness of the
layer H0 and the angle α of the inclined plane to the horizontal line, then the ratio of time scales corresponding to
two Ostwald numbers is t(1)

0 /t
(2)
0 = (O(2)

n /O(1)
n )1/2. It follows from here that an increase in On leads to a decrease

in the time scale. The dimensionless time is determined as t̄ = t/t0, where t is the dimensional (physical) time;
hence, we have

t̄(1)/t̄(2) = (t(1)/t(2))(O(1)
n /O(2)

n )1/2.

It follows from this formula that one dimensionless time t̄(1) = t̄(2) in calculations with two values of On corresponds
to different instants of physical time t(1)/t(2) = (O(2)

n /O(1)
n )1/2, whereas one moment of physical time t(1) = t(2)

corresponds to different instants of dimensionless time t̄(1)/t̄(2) = (O(1)
n /O(2)

n )1/2. If O(2)
n > O(1)

n , then t(2) < t(1)

and t̄(2) > t̄(1). Figure 5 shows the profiles of the free surface of the water solution of lime for an identical amplitude
and two values of On at the same instant of physical time t = 23.7 msec. The flow develops faster at higher Ostwald
numbers.

Thus, roll waves of the smoothed hydraulic jump type with an unchanged shape can propagate over the
surface of thin layers of dilatant fluids moving along inclined planes, if their amplitude is lower than a certain
critical value depending on the index of the fluid and Ostwald number. For higher amplitudes, such steady waves
do not exist, and unsteady waves have a more complicated structure.
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